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The unsteady structure of cavitating flows is investigated by coupled experimental and
numerical means. Experiments focus on the structure and dynamics of sheet cavitation
on the upper side of a two-dimensional foil section in the ENSTA cavitation tunnel.
Various flow conditions are investigated by varying the pressure, the flow velocity,
and the incidence of the foil section. High-frequency local measurements of volume
fractions of the vapour phase are performed inside the liquid/vapour mixture by
a X-ray absorption method. The numerical approach is based on a macroscopic
formulation of the balance equations for a two-phase flow. The assumptions required
by this formulation are detailed and they are shown to be common to almost all
the models used to simulate cavitating flows. In the present case we apply a single-
fluid model associated with a barotropic state law that governs the mixture density
evolution. Numerical simulations are performed at the experimental conditions and
the results are compared to the experimental data. A reliable agreement is obtained
for the internal structure of the cavity for incidence varying between 3◦ and 6◦. Special
attention is paid to the mechanisms of partial and transitional instabilities, and to the
effects of the interaction between the two sides of the foil section.

1. Introduction
Turbopumps of rocket cryogenic engines operate in cavitating conditions because

of the low pressure in hydrogen and oxygen tanks. Therefore, the first stage of these
pumps usually consists of an axial runner called an inducer, in which the incoming
flow vaporizes on the blade suction side and in the other low-pressure areas, located
mainly at the tip. At the outlet, the pressure of the fluid is high enough to avoid any
risk of cavitation in the subsequent centrifugal stages of the pump. The design of the
inducer is of prime importance, since its performance must be maintained even in
cavitating conditions. The presence of vapour in the inducer modifies the blade load,
which can rapidly lead to a diminution of performance.

Moreover, cavitation is responsible for several instabilities that affect the global
behaviour of the pump. The first one consists of a coupling between the blade-
to-blade channels, leading to non-symmetrical structures of vapour in the inducer.
These flow patterns cause some important forces on the inducer casing and on
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the other pump components. They have been reported by Kamijo, Shimura &
Watanabe (1977) and de Bernardi, Joussellin & Von Kaenel (1993), and modelled
numerically by Tsujimoto, Kamijo & Yoshida (1993) and Coutier-Delgosha et al.
(2004). The second flow instability consists of the self-oscillatory behaviour of each
sheet of cavitation, occurring mainly at the partial flow rate, which can result in
severe pressure fluctuations at the inducer outlet. This phenomenon has been studied
experimentally in cavitation tunnels by many authors (Kubota, Kato & Yamaguchi
1992; Chen & Heister 1996; Stutz & Reboud, 1997a, 2000; Kjeldsen, Arndt & Efferts
2000; Leroux, Coutier-Delgosha & Astolfi 2005) to understand the mechanisms of
the fluctuations. Venturi-type sections and two-dimensional foil sections have both
been used to obtain unsteady sheet cavitation and to investigate its behaviour. These
studies have considerably improved the understanding of the cavity dynamics: the
occurrence of a re-entrant jet under the cavity, that flows upstream and results
periodically in cavity break off, was demonstrated for example by Stutz & Reboud
(1997b) with double optical probe measurements and by Pham, Larrarte & Fruman
(1999) with electrical impedance probes. This process, initially described by Furness &
Hutton (1975), results in the periodical detachment of the rear part of the cavity, and
its convection downstream until it collapses. Other reasons for the flow unsteadiness,
such as a combination of a re-entrant jet with a periodic interface destabilization in
the downstream end of the cavity, were proposed by Lush & Peters (1982). More
recently, the pressure wave resulting from the cloud collapse has been investigated by
Leroux et al. (2005), both experimentally and numerically. The magnitude of this wave
has been found to influence significantly the frequency of the periodical cavitation
cycle.

However, up to the present time, only a few authors have investigated the internal
structure of such cavitating flow, whether by experimental means (Stutz & Reboud
1997a,b, 2000; Gopalan & Katz 2000) or by numerical calculations (Reboud, Stutz &
Coutier 1998; Coutier-Delgosha, Reboud & Delannoy 2003a). This aspect is essential
for improving understanding of the mechanisms governing vapour creation and cavity
fluctuations. But most of the studies have focused on the external liquid flow (Ceccio &
Brennen 1992, Le, Franc & Michel 1993) with no information about the two-phase
flow inside the vaporized areas. This is mainly due to the difficulties involved in such
investigations: the volume fraction of the vapour phase varies in the range 0 to 1, with
bubbles of various sizes, from a few µm to a few mm, affected not only by the periodic
vapour cloud shedding but also by high-frequency fluctuations. More recently a double
optical probe device has been developed by Stutz & Reboud (1997a, b) and applied
to the measurement of both the velocity and the void fraction within steady and
unsteady sheet cavities in a Venturi-type section. This work confirmed the presence of
the re-entrant jet, and also provided some first indications concerning the two-phase
structure: the void ratio was found to not exceed 50 % in the case of steady sheet
cavitation, and 25 % in the case of unsteady cavities. However, the uncertainty on the
measurements was estimated as about 15 % by the authors. Global measurements of
the volume fraction of vapour within the cavity in the same flow configuration also
performed by Stutz & Legoupil (2003) with a X-ray attenuation device. The results
corroborated the optical probe measurements. However, the aim of that work was
not to determine local information about the flow inside the sheet cavity.

The present paper is devoted to the study of the unsteady two-phase flow structure
of sheet cavitation by a coupled experimental/numerical approach. The configuration
consists of a two-dimensional foil section positioned at a low incidence in a cavitation
tunnel. The flow velocity is varied from Uref =5ms−1 up to 9m s−1, while the pressure
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Figure 1. Sheet cavitation on the upper face of the two-dimensional foil section.

is adjusted to obtain cavitation numbers σ = (P -Pv)/
1
2
ρlU

2
ref varying between 0.6 and

1.4, where Pv denotes the vapour pressure, Uref the flow velocity at the inlet of the
test section, and ρl the liquid density. Sheet cavitation is obtained on the upper
side of the foil, as shown in figure 1. Its length and behaviour depend on the flow
conditions. Three values of the foil angle of attack are considered (3◦6′, 4◦42′, 5◦54′)
in order to obtain a range of unsteady behaviour. An X-ray attenuation device is
used to measure locally the instantaneous value of the volume fraction β = Vv/V ,
with V a measurement volume and Vv the vapour volume inside. Unlike the previous
experiments of Stutz & Legoupil, the measurement volumes here are discretized not
only in the flow direction but also along the cavity height, in order to obtain the
evolution of the volume fraction of vapour from the foil surface up to the limit
of the vaporized area. Fast data acquisition (1000 Hz) enables the measurement of
the time/space distribution of the vapour phase during the vapour shedding cycles.
Moreover, the whole cavitating area is investigated, from the foil leading edge to
the cavity far wake, in order to calculate unsteady flow characteristics such as the
convection velocity of the vapour clouds.

Numerical simulations of cavitating flows are usually based on a coupling between
the resolution of the Reynolds-averaged Navier–Stokes (RANS) equations and a
physical model of cavitation. For some of these models, only the influence of the
sheet cavity on the external liquid flow has been considered (Dang & Kuiper 1998;
Kai & Ikehata 1998). Therefore only the outer flow was calculated, and almost no
information is available concerning the internal liquid/vapour structure. This kind
of method only applies in the particular configuration of stable sheet cavitation,
and peripheral cavitating secondary flows in inducers cannot be simulated with this
approach. Unsteady behaviours and the vapour cloud shedding involved in cavity
self-oscillations are also usually outside the scope of these models.

To treat unsteady phenomena, the RANS equations are usually solved in the whole
computational domain, including the cavitating areas (Delannoy & Kueny 1990;
Chen & Heister 1994; Grogger & Alajbegovic 1998; Kunz et al. 2000; Coutier-
Delgosha et al. 2003a). In these models, the behaviour of the liquid/vapour mixture
has been calculated using several different methods: some authors have proposed a
state law for the mixture (Delannoy 1989; Song & He 1998), while others consider
the evolution of bubbles on the basis of the Rayleigh–Plesset equation (Kubota et al.
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1992; Singhal et al. 2002) or express the mass transfers between liquid and vapour in
terms of the local inequality between the pressure and the vapour pressure (Reboud &
Stutz 1995; Merkle, Feng & Buelow 1998; Kunz et al. 2000; Senocak & Shyy 2004a).
In the last ten years, volume-of-fluid (VOF) methods based on interface tracking
(Dieval, Arnaud & Marcer 1998) have also been efficiently applied.

In the present case we apply a single-fluid model: this means that the vapour/liquid
medium is considered as a homogeneous fluid the density of which is governed by a
barotropic-state law initially proposed by Delannoy & Kueny (1990). To make clear
the equations solved in this model and the assumptions that are involved, § 2 focuses
on the balance equations for a cavitating flow and the successive simplifications that
are required. The objective is to find how the balance equations that are commonly
considered in a cavitation problem are obtained, and to determine what physical
assumptions are applied in the usual cavitation models.

Sections 3 and 4 are devoted to the presentation of the experimental device and
the numerical model, respectively. Calculations are carried out at the experimental
flow conditions. In § 5, the two-phase flow structure is investigated, on the basis of
the experiments. The numerical results are also compared to the experimental data to
demonstrate the capability of the model to simulate both the general behaviour of the
sheet cavities and their local structure. Then, a more detailed analysis is performed
in § 6 to understand the process of vapour creation and convection inside the cavity.

2. Physical model of cavitation
This section is devoted to the presentation of the physical model that is applied

to treat the vaporization and condensation processes and the interactions between
liquid and vapour. Special attention is paid to the significance of the equations that
are used and also to the assumptions that they involve. The objective is to compare
the different models usually applied and also to justify the physical approach that is
used to obtain the numerical results in the present work.

In most of the models applied to numerical simulations of cavitating flows, the
mass balance equation is expressed in two ways: either for each of the two phases,
according to

∂(βkρk)

∂t
+ ∇ · (βkρkUk) = Γk,

∑
Γk = 0

(2.1)

where Uk is a velocity characterizing phase k (its definition will be discussed hereafter),
and Γk is the interfacial mass source in phase k due to vaporization or condensation;
or for the medium composed of the two phases, with a supplementary diffusion
equation for one of the two phases

∂(ρm)

∂t
+ ∇ · (ρmUm) = 0, (2.2)

∂(βvρv)

∂t
+ ∇ · (βvρvUm) = Γv, (2.3)

where indices m and v refer respectively to the mixture and to the vapour phase. The
momentum balance equation,

∂(ρmUm)

∂t
+ ∇ · (ρmUm · Um) = ∇ · Πm, (2.4)
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is written systematically for the medium, so the slip between the two phases is not
considered. All these equations involve a parameter βk(k = v, l) that denotes the
local volume fraction of phase k: its usual definition in the numerical simulations is
βk = Vk/V where V denotes the volume of each cell and Vk the proportion of this
volume occupied by phase k. In the papers devoted to the simulation of cavitating
flows, βv is systematically denoted αv or α, and called the void fraction. However,
neither the notation nor the appellation are appropriate, since in the two-phase flow
community the void fraction α(M) commonly equals �tk/�t , where �tk is the time
of presence of phase k at point M during the time �t .

In the present paper, the notations βv or β are used for the volume fraction of the
vapour phase.

Equations (2.1)–(2.4) appear to be derived from the ones proposed initially by
Ishii (1975), who obtained averaged formulations: in the first, the two phases are
considered separately, with interaction terms between them (two-fluid model), while
in the second only one set of equations is applied for the medium composed of the two
phases (diffusion model). However, Ishii obtains these equations by time-averaging
the local instant formulation equations over a period �t , which is “large enough to
smooth the local variations of properties”, but small compared to the scale of the
macroscopic flow unsteadiness. So in this case, the equations involve the local void
fraction αk , instead of the volume fraction βk . However, as was mentioned previously,
in the literature devoted to the simulation of cavitation and in the community, βk

is systematically denoted the “void fraction α”, which makes equations (2.1) to (2.4)
apparently identical to the ones obtained by Ishii. So, most of the time, the above
equations are applied to cavitation without any further discussion.

Conversely, some authors indicate that they were obtained by density-weighted
averaging of the local instant formulation equations (Thai Van et al. 1994), while
others refer to the work of Drew (1983). Drew revisited the features of two-phase
flows and proposed a general formulation of the equations for the different types of
averaging. In the particular case of space averaging, the above equations are obtained
with the appropriate definition of βk . However, the physical meaning of the velocities
Uk and Um is not straightforward. Uk is defined by the following relation:

Uk = 〈χkρu〉/βkρ̃k (2.5)

where 〈 〉 denotes the averaging process, u is the local velocity, ρ the local density,
and χk is the phase density function defined to be:

χk(M, t) =

{
1 if M is in phase k at time t

0 otherwise
(2.6)

and

ρ̃k = 〈χkρ〉/βk. (2.7)

In the same way, Uk · Uk refers to 〈χkρu · u〉/βkρ̃k , and not to 〈χkρu〉/βkρ̃k × 〈χkρu〉/
βkρ̃k .

So Uk and U k · Uk result from mathematical definitions but theoretically they
may not be directly connected to each other. The same discrepancy occurs for the
mixture velocity Um =

∑
(ρkU k/ρm), where ρm =

∑
βkρk . The physical significance of

velocities Uk and Um is thus difficult to handle. The definition of βk also brings some
confusion: although equations (2.1) to (2.4) are usually called local balance equations
for the two phases and/or the medium, βk is a volume fraction defined in a control
volume V whose size should be properly defined. This inconsistency usually vanishes
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Liquid

V

Figure 2. Illustration of the control volume V.

when the equations are discretized, since V is then identified with the volume of the
cells. However, the formulation of the equations in the physical models should be
clarified.

In the present work we derive the equations (2.1) to (2.4) from the mass and
momentum balance in a control volume V . No averaging is performed, but a condition
is given on the size of the control volume, in order to define some macroscopic
variables at the scale of V .

2.1. Mass balance equations for a two-phase flow

We consider in this section a volume V of fluid in a liquid/vapour mixture. Its
geometric contour is assumed stationary and it is continuously crossed by the flow.
So, V contains a vapour/liquid mixture that fluctuates in time. Thus, the vapour
and the liquid volumes in V , namely Vv and Vl , also fluctuate. The boundary of V

is denoted S, and ρv , ρl refer respectively to the vapour and liquid densities, which
are both assumed to be constant. Figure 2 is a schematic illustration of a possible
composition of V at a given time. Note that the size of V will be discussed further
hereafter, as it will appear to be a critical parameter of the problem, to obtain the
classical equations applied to model cavitating flows.

The mass conservation in the volume V can be written as follows:

∂

∂t
(mass of vapour inside V) = mass fluxes across S

+ vaporization/condensation inside V,

which can be expressed in an integral mathematic form:

∂

∂t

⎡
⎣∫∫∫

V

χvρv dτ

⎤
⎦ = −

∫∫
©
S

χvρv(uv · n) ds + ΓvV (2.8)

where uv is the local velocity of the vapour inside V . The definition of χv according
to equation (2.6) implies that only two states of the fluid (liquid and vapour) should
be taken into account in V . This means that V is assumed to be much larger than
the characteristic thickness of the interfaces between the two phases, so that this
intermediate state of the fluid can here be neglected. The right-hand-side term ΓvV

denotes the mass source term corresponding to the appearance or vanishing of vapour
due to vaporization/condensation phenomena inside V .
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The density ρv of vapour being constant, equation (2.8) becomes:

∂

∂t
(ρvVv) = −ρv

∫∫
©
S

(χvuv · n) ds + ΓvV = −ρv

∫∫∫
V

∇(χvuv) dτ + ΓvV (2.9)

= −ρv

⎡
⎣∫∫∫

V

(χv∇uv + uv · ∇χv) dτ

⎤
⎦ + ΓvV . (2.10)

As mentioned previously, studies of cavitating flow usually focus on a macroscopic
point of view: it implies that the precise motions of the very small bubbles inside V

are unknown. They are only taken into account at the V scale by defining a constant
macroscopic velocity Uv for the vapour inside V . Note that Uv does not result from
any mathematical averaging, but only from the assumption that all bubbles have the
same velocity inside the control volume. This implies that the volume V should be
much smaller than the characteristic scale of the flow dynamics. A second condition
on the size of V is thus obtained. This suggests an analogy with the notion of a
fluid particle defined in single-phase conditions (volume of fluid much larger than the
molecular scale and much smaller than the characteristic scale of the flow variations).
We may define physically here a ‘two-phase fluid particle’ whose volume V is much
larger than the thickness of the liquid/vapour interfaces, but also much smaller than
the characteristic scales of the flow. All macroscopic variables, such as Uv and ∇Uv

can then be considered as constant inside the volume V . Note that the condition on
the size of V is not much more restrictive than that on the size of a fluid particle, since
the liquid/vapour interface thickness is about 1 nm (Caupin 2005), which represents
only three molecular diameters.

Using the fact that volume V is stationary, equation (2.10) can thus be expressed
in the form:

ρv

∂

∂t
(Vv) = −ρv∇Uv

∫∫∫
V

χv dτ − ρvUv · ∇
∫∫∫

V

χv dτ + ΓvV . (2.11)

The definitions of χv and the volume fraction of vapour β lead to:∫∫∫
V

χv dz = Vv = βV. (2.12)

The combination of relations (2.11) and (2.12) leads to

ρv

∂

∂t
(βV ) = −ρvV ∇Uvβ − ρvV Uv · ∇β + ΓvV . (2.13)

Note that the initial equation, involving local values of the variables inside the
integral signs, has been turned into a macroscopic relation, in which only the volume
fraction of vapour β inside V and the macroscopic variables defined at V scale
appear. Dividing by ρvV , the final expression for the mass conservation in V can be
written

∂β

∂t
+ ∇(βUv) =

Γv

ρv

. (2.14)

This expression is the classical one used as the local mass equation for the vapour
phase in a cavitating flow (Merkle et al. 1998; Reboud et al. 1998; Kunz et al. 2000).
The same equation is obtained by considering a travelling volume V , and following
the motion of the fluid particles that are initially contained inside. In this case, fluxes
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across S are zero, but the corresponding terms are transferred in the Lagrangian time
derivative.

The similar conservation of liquid inside V leads to the following analogous
equation:

∂(1 − β)

∂t
+ ∇((1−β)U l) = −Γv

ρl

(2.15)

where U l denotes the macroscopic velocity of the liquid inside V . The source term of
the liquid inside V (corresponding to the fluid vaporization or condensation) is the
opposite of the one that was used for the vapour: any vaporization during a time �t

of a liquid mass m = ΓvV �t , for example, induces a production of a vapour mass m

as well as a vanishing of the same liquid mass.

2.2. Momentum balance equations

In the volume V , the momentum conservation for the vapour phase can be expressed
as: (∂/∂t) (Vapour momentum) = Momentum fluxes across S + Gradient of the
external efforts acting on the vapour phase + Momentum exchanges inside V between
vapour and liquid. It corresponds to:

∂

∂t

⎡
⎣∫∫∫

V

χvρvuv dτ

⎤
⎦ = −

∫∫
©
S

δρvuv(uv · n) ds +

∫∫∫
V

χv∇πv dτ + MvV (2.16)

where MvV is the momentum transfer term from liquid to vapour, and πv is the
external stress tensor relative to the vapour phase. Note that the effect of gravity is
neglected, which is a classical assumption for cavitating flows. The Froude number
Fr based on the flow velocity Uref and the vertical length scale Lv of the problem is
usually much larger than one. In the experimental situation presented in § 3, Lv is the
maximum thickness of the sheet cavity, i.e. about 3 cm, and Uref = 6 ms−1, so Fr ∼ 11.
This gives:

∂

∂t
(ρvUvVv) = −ρv

∫∫∫
V

∇
(
χvu2

v

)
dz +

∫∫∫
V

χv∇πv dτ + MvV (2.17)

Recall that ∇(u2
v) is simply notation for a vector, the components of which are

ci = ∇[ρv(uv)iuv]. As previously, the condition on the size of the control volume V

results in considering all macroscopic variables, such as U2
v , ∇(U2

v), and the external
macroscopic stresses denoted Πv , as constant inside V . Thus they can be moved
outside the integral signs, as in the mass balance equations. This finally leads to:

ρv

∂

∂t
(UvVv) = −ρv∇

(
U2

v

)
Vv − ρvU2

v∇(Vv) + Vv∇Dv + MvV . (2.18)

Then, introducing the volume fraction of vapour β and dividing by ρvV :

∂

∂t
(βUv) = −β∇

(
U2

v

)
− U2

v∇β +
β

ρv

∇Πv +
Mv

ρv

, (2.19)

∂

∂t
(βUv) + ∇

(
βU2

v

)
=

β

ρv

∇Πv +
Mv

ρv

. (2.20)

The corresponding momentum conservation can be obtained for the liquid phase:

∂

∂t
((1 − β)U l) + ∇

(
(1 − β)U2

l

)
=

1 − β

ρl

∇Πl +
M l

ρl

(2.21)
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where M lV is the momentum transfer term from vapour to liquid, which is a priori
not equal to −MvV , when the surface tension σs is taken into account, and πl is the
external stress tensor relative to the liquid phase.

2.3. Closure law

The governing equations have been written for the liquid and vapour, resulting in two
scalar equations and two vectorial ones. The system involves two vectorial unknowns
Uv , U l , and three scalar ones: the volume fraction of the vapour phase β and the
pressures Pv , Pl in the vapour and the liquid phases (contained in the stress tensors
Πv and Πl). A final scalar relation is thus missing for the system to be closed. It
may consist of a local jump condition at the interface, relating Pv and Pl to the
local interface curvature and to the surface tension σs . No macroscopic information
is available concerning the shape and the position of each interface inside V , so
the local curvature can only be derived from the bubble radius, assuming that all
inclusions are spherical. However, the size of the vapour bubbles varies between a few
µm and a few mm. Moreover, in the experiments performed in cavitation tunnels,
vapour bubbles are nucleated from small air bubbles, so they contain some air that
should be taken into account, since it modifies the internal pressure of the bubbles.
The very small air-filled bubbles are characterized by a high surface tension, while
the large ones are mainly composed of vapour, and their surface tension has much
decreased. The transition between the two situations depends on a critical pressure
value in the liquid, as explained by La Porta et al. (2000).

The presence of air is usually not considered in the cavitation models, so the effects
of surface tension are systematically neglected, and liquid and vapour are assumed to
be at the same pressure inside V : Pv = Pl . In the present experimental investigations,
visualizations were performed inside the sheet cavity with an endoscopic device
(Coutier-Delgosha et al. 2006), and it was estimated that most of the bubbles are
larger than R = 1 mm. A rough estimation of Pv − Pl with the Laplace law for such
a bubble radius gives Pv − Pl = 2σs/R = 145 Pa, which is small compared with the
scale of pressure variations during vaporization and condensation, i.e. 2700 Pa (see
§ 2.5). This confirms that the effects of surface tension can be neglected in a first
approximation.

Therefore momentum fluxes are assumed to be identical from vapour to liquid and
from liquid to vapour: M l = −Mv .

Energy balance equations involving transfer terms between vapour and liquid can
be also written for both phases. Moreover, turbulence also leads to a coupling between
vapour and liquid. These mechanisms are usually neglected, so we focus hereafter on
the different models that are applied to express the mass and momentum transfer
terms Γk and Mk .

2.4. Single-fluid approach

The two models proposed by Ishii (1975), namely the ‘two-fluid model’ and the
‘diffusion model’ are based on two different physical approaches, and also related to
distinct systems of equations. The two-fluid model is derived from equations (2.14),
(2.15), (2.20), and (2.21) for the two phases, whereas the diffusion model is based on
the assumption that the liquid and the vapour have the same dynamics. In this case the
slip between the two phases is neglected, and thus Uv = U l = Um and Πv = Πl = Πm.
The diffusion model focuses on the behaviour of the medium composed of both
vapour and liquid. The equations can be derived from the previous ones, with the
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definition for the medium density: ρm = βρv + (1 − β)ρl .

∂(ρm)

∂t
+ ∇ · (ρmUm) = 0, (2.22)

∂β

∂t
+ ∇ (βUm) =

Γv

ρv

(2.23)

(equations derived from the mass balance);

∂

∂t
(ρmUm) + ∇

(
ρmU2

m

)
= ∇Πm, (2.24)

∂

∂t
(βUm) + ∇

(
βU2

m

)
=

β

ρv

∇Πm +
Mv

ρv

(2.25)

(equations derived from the momentum balance).
The diffusion model is currently applied in most simulations of cavitation. It is

usually denoted ‘single-fluid model’ (Delannoy & Kueny 1990; Chen & Heister 1994;
Grogger & Alajbegovic 1998; Arndt et al. 2000; Coutier-Delgosha et al. 2003a)
because the two phases are considered as a single fluid. Some authors refer to a
‘two-fluid model’ when they consider separate mass equations (2.14) and (2.15) for
liquid and vapour (Merkle et al. 1998; Kunz et al. 2000). However, in these works no
slip is considered between liquid and vapour, and only one momentum equation is
solved for the medium, so basically all these models are based on the diffusion model
initially proposed by Ishii.

In the diffusion model only equation (2.24) is considered for the momentum balance,
while equation (2.25) is not solved. This suggests that equation (2.25) is implicitly
assumed to be redundant when used with equation (2.24). However, this is true only
for a particular expression for the momentum fluxes Mv .

Equation (2.25) can be expressed in the form

ρvβ
∂Um

∂t
+ ρvUm

∂β

∂t
+ ρvβUm∇(Um) + ρvUm∇(βUm) = β∇Πm + Mv. (2.26)

The different terms can be grouped according to the following expression:

ρvUm

[
∂β

∂t
+ ∇(βUm)

]
+ ρvβ

[
∂Um

∂t
+ Um∇(Um)

]
= β∇Πm + Mv. (2.27)

Thus, using equation (2.23):

ρvβ

[
∂Um

∂t
+ Um∇(Um)

]
= β∇Πm − ΓvUm + Mv. (2.28)

Equation (2.5) can be also written, scaling all terms by ρm/ρv , as

ρm

∂Um

∂t
+ ρmUm∇(Um) =

ρm

ρv

[
∇Πm − ΓvUm

β
+

Mv

β

]
. (2.29)

Scaling (2.22) by Um leads to

Um

∂ρm

∂t
+ Um∇(ρmUm) = 0. (2.30)

Thus, summing equations (2.29) and (2.30):

∂(ρmUm)

∂t
+ ∇

(
ρmU2

m

)
=

ρm

ρv

[
∇Πm − ΓvUm

β
+

Mv

β

]
. (2.31)
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Equation (2.31), derived from equation (2.25), is redundant when using equation (2.24)
if

ρm

ρv

[
∇Πm − ΓvUm

β
+

Mv

β

]
= ∇Πm

or, using β = ρm−ρl

ρv−ρl
:

Mv = ΓvUm +
(ρm − ρl)(ρm − ρv)

ρm(ρv − ρl)
∇Πm. (2.32)

It appears that ignoring equation (2.25) results in treating the momentum fluxes
between vapour and liquid implicitly according to equation (2.32). The first term in
the expression for Mv corresponds to a momentum transfer directly linked to the
mass transfer during vaporization and condensation processes: let us consider inside
the volume V an elementary mass δm of liquid moving at velocity Um. If these liquid
particles vaporize, δm is transferred from the liquid phase to the vapour one, and the
vapour phase also gains the momentum δmUm.

The second term in the expression for Mv results from the momentum fluxes due
to the inertial effects, i.e. the stresses applied by one phase on the other when the
latter accelerates or decelerates. The general expression for this term is given by Ishii
(1975):

M inertial effects = βeβ(1 − β)

[
DvUv

Dt
− DlU l

Dt

]
(2.33)

where βe is a parameter derived from experiments (kg m−3), and Dv/Dt , Dl/Dt

are the Lagrangian derivatives for the vapour and the liquid phases, respectively.
Equation (2.32) can also be expressed in the following form:

Mv = ΓvUm + (ρl − ρv)β(1 − β)
∇Πm

ρm

. (2.34)

It appears that the no-slip condition significantly simplifies equation (2.33) in the
present case: the term [DvUv/Dt − DlU l/Dt] can be identified with ∇Πm/ρm, while
the parameter βe here equals ρl − ρv . It means that if a volume of liquid is accelerated,
the resistance applied by the adjacent volumes of vapour is transmitted exclusively by
the local stress tensor. The forces between vapour and liquid are thus only due to the
pressure and the classic viscous stresses, as in a single-phase flow. This leads to the
treatment of only equations (2.22), (2.23), and (2.24), which are the basis of most of
the cavitation models, although the mass equations are sometimes expressed under in
form of equations (2.14) and (2.15), as reported previously. The different approaches
differ in practice by the expression for the mass transfer Γv .

2.5. Expression for the mass transfers

Mass transfers between the two phases are described either by a supplementary
equation that controls the convection/production of vapour (Merkle et al. 1998;
Kunz et al. 2000), or by the evolution of a cluster of bubbles according to a simplified
Reyleigh–Plesset equation (Kubota et al. 1992; Singhal et al. 2002), or by a barotropic-
state law derived from the model proposed by Delannoy & Kueny (1990).

In the two first cases, the expression for Γv is given explicitly, whereas in the case
of the barotropic state law it results from the shape of the law. Explicit expressions
for Γv usually involve the local pressure difference with the vapour pressure. Several
expressions of Γv were proposed successively by Chen & Heister (1994), Avva,
Singhai & Gibson (1995), Reboud & Stutz (1995), Merkle et al. (1998), Kunz et al.
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(2000), and Senocak & Shyy (2004a, b). Kunz et al. proposed splitting Γv into two
different terms respectively for the vaporization and the condensation:

Γv = m− + m+, (2.35)

with

m− =
Cdestρvβl min(0, P − Pv)(

1
2
ρlU 2

∞
)
t∞

V (vaporization term),

m+ =
Cprodρv(βl)

2(1 − βl)

t∞
V (condensation term),

and

Cdest = Cprod = 100.

Other expressions for Γv based on the evolution of a cluster of bubbles according
to a simplified Rayleigh–Plesset equation were proposed successively by Kubota
et al. (1992), Yu, Ceccio & Tryggvasan (1995), Hirschi & Dupont (1998), Matsumoto
(1998), Sauer & Schnerr (2000), and Singhal et al. (2002). Although this formulation is
sometimes considered as more physically relevant than the previous one, some serious
restrictions should be mentioned: the Rayleigh–Plesset equation is assumed to govern
the radius evolution of a single spherical bubble in a pressure field, whereas clouds
of vapour are composed of many bubbles that strongly interact with each other, and
do not remain spherical. All these explicit expressions for Γv are postulated on the
basis of physical considerations whose validity depends on the local two-phase flow
structure: the expression based on the Rayleigh–Plesset equation is relatively well
adapted to clouds of small bubbles, for example in the wake of the sheet cavities,
while it should be considered with caution inside the cavity, where the volume fraction
of vapour increases up from 30 % to 50 % (Stutz & Reboud 1997a, b, 2000; Coutier-
Delgosha et al. 2006). On the other hand, the expressions for Γv based on the local
value of the pressure leads to reliable results in the areas of cavity growth, since this
process is mainly governed by the pressure gradient evolution.

An alternative approach consists of postulating a state law for the mixture, instead
of resolving the diffusion equation (2.23). In most such models a barotropic state
law is considered, mainly characterized by a high slope in the liquid/vapour mixture
where the speed of sound decreases down to a few metres per second (Jakobsen 1964).
In this case the mass fluxes between vapour and liquid are not given explicitly, but
they depend implicitly on the shape of the state law. The local volume fraction of
vapour β is derived from the local value of the medium density ρm. So these models
correspond to the resolution of the three following equations:

∂ρm

∂t
+ ∇(ρmUm) = 0 (mass equation), (2.36)

∂

∂t
(ρmUm) + ∇(ρU2

m) = ∇Πm (momentum equation), (2.37)

β = f (P ) (state law). (2.38)

Equations (2.36) to (2.38) result in the treatment of a single-phase flow characterized
by a high compressibility, with the density varying from ρv to ρl . This approach has
been used for example by Delannoy & Kueny (1990), Ventikos & Tzabiras (1995),
Reboud et al. (1998), Song & He (1998), Shin & Ikohagi (1998). It is based on the
same main assumptions as the models mentioned previously, but the mass fluxes are
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Figure 3. Barotropic state law for the mixture.

treated implicitly. So all these models are much closer to each other than is usually
suggested. The only significant difference results from the absence of time relaxation
in the models based on a state law: the vaporization and condensation processes
are instantaneously correlated with the pressure fluctuations, whereas supplementary
effects can be added to the explicit expressions for Γv . However, these effects usually
involve some adjustable parameters (see Cprod and Cdest in the model proposed by
Kunz et al.). In the barotropic state law proposed initially by Delannoy (1989), only
the maximum slope of the law, i.e. the minimum speed of sound, must be known.
The pure liquid and pure vapour areas were considered as incompressible.

The present approach is derived from this initial model: the flow is assumed to
be composed of a single fluid whose density varies abruptly from the pure liquid
one to the pure vapour one in the vaporized areas. So the liquid/vapour mixture is
considered as a homogenous medium whose local density is strongly modified in case
of vaporization or condensation. Density variations are controlled with a barotropic
state law (figure 3) that links them directly to the pressure field evolution. The state
law is mainly composed of three parts:

(i) For a pressure much higher than the vapour pressure Pv (on the right of figure 3),
the flow is composed of pure liquid and the Tait state law reported by Knapp, Daily &
Hammit (1970) is applied:

ρm

ρref

=

(
P + P0

P T
ref + P0

)1/n

(2.39)

where P T
ref is the pressure at the outlet, ρref the liquid density, and for water

P0 = 3 × 108 Pa and n= 7.
(ii) For a pressure much lower than Pv (on the left of figure 3), the fluid is locally

completely vaporized and the density is governed by the perfect gas law:

P

ρm

= RT with R = 462 JK−1 kg−1. (2.40)

(iii) These two low compressibility configurations are joined in the vapour pressure
neighbourhood by a central part whose high slope models the high compressibility of
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the liquid/vapour mixture. Many equations of state applied to vapour–liquid phase
equilibria are available in the literature (Wei & Sadus 2000). Their accuracy has been
much improved since the initial law proposed by van der Waals in 1873. However,
the cavitating flow is characterized by continuous vaporization and condensation,
so thermodynamic equilibrium is never reached between phases. Thus, there is no
physical justification for the use of these equations of state.

The shape of this part has only a small influence on the results: only the value of
the minimum speed of sound cmin (i.e. the maximum slope) is relevant. This parameter
is thus derived from the estimated value of the speed of sound in a cavitating area,
i.e. about a few metres per second (Jakobsen 1964). cmin = 1.5 m s−1 was adopted
previously by Coutier-Delgosha et al. (2003a) as the default value and it is applied
in the present study.

3. Experimental device
We consider the cavitating flow on a two-dimensional foil section whose dimensions

are 150 mm chord and 80 mm span. Its cross-section is composed of a flat upper
surface and a convex lower surface of 195 mm radius, as reported in figure 4. The
foil is placed in the ENSTA cavitation tunnel whose test section is of 150 mm height,
80 mm width, and 640 mm length. The foil is located at mid-height, with a small
angle of attack, so sheet cavitation appears on the upper face, when the pressure is
decreased in the tunnel. Compared with the Venturi configuration studied previously
by Stutz & Reboud (1997a, b, 2000), the cavitation behaviour is modified by the
possible interaction between the foil pressure and suction sides. The inner structure
of the sheet cavity is investigated at three angles of attack αi , namely 3◦6′, 4◦42′ and
5◦54′. These values correspond to the actual incidences checked after manufacturing
the sidewalls on which the foil is fixed. The uncertainty in αi can be estimated to
1%. Note that αi is expressed in degrees in the text for convenience, but its value
is set in radians in all expressions it is involved in hereafter. The values of αi are
consistent with the incidence of the flow at the blade leading edge in an inducer, and
the periodic cavity fluctuations obtained in this two-dimensional configuration are
representative of the oscillations observed in the three-dimensional turbomachinery.

The cavitating conditions are defined by the value of the cavitation number
σ = (Pref − Pv)/

1
2
ρ1U

2
ref where Pref and Uref denote respectively the static pressure

and the mean velocity at the inlet of the test section. Pref is measured with a JPB
model TB 142 absolute pressure sensor connected to two pressure taps located
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respectively at the bottom and at the top of the test section inlet. Uref is derived from
the mass flow rate Q and the size of the cross-section at the inlet. Q is controlled by a
propeller flow meter. These flow conditions are regulated with 3 % and 1 % precision
respectively for Pref and Uref , which leads to a 5 % uncertainty in the cavitation
number σ .

The size of the sheet cavity will hereafter be mainly characterized by its length Lcav .
Lcav refers in the present work to the attached part of the vaporized area only, without
considering the clouds of vapour detached from the foil. Although Lcav fluctuates in
unsteady conditions, because of the periodic vapour shedding, a mean length can be
estimated visually using signs painted on the foil surface each 5 mm. This method
has been compared by Coutier-Delgosha et al. (2005) to the lengths obtained by
averaging respectively 60 side views and 60 top views of the cavity, and a maximum
discrepancy of 8 % was obtained.

An X-ray absorption device is applied to investigate the local volume fraction of
the vapour phase inside the cavity and in the wake. The experiments were carried
out as a collaboration between the ENSTA laboratory and the CEA (French Atomic
Energy Commission). A 160 kV/1 mA X-ray generator was used to emit radiation
from one vertical side of the cavitation tunnel (figure 5), while 24 detectors running in
current mode measured the X-ray intensity on the opposite side, from the foil leading
edge to the trailing edge. This method enables the determination of the instantaneous
quantity of vapour in the volumes crossed by the X-rays from the generator to each
detector, according to the following equation:

Vv(t)

V
= 1 − ln(I0/I (t))

ln(I0/I1)
(3.1)

where Vv(t) is the instantaneous volume of vapour, V is the total volume, and I0

(I1) is the intensity detected when the measurement volume V is empty (full) of
pure liquid. Fast data acquisitions at 1000 Hz are performed in order to detect the
evolution of the volume fraction associated with the flow instability. This method was
applied previously by Stutz & Legoupil (2003) in the configuration of sheet cavitation
at the throat of a Venturi-type section, to study the evolution of the amount of
vapour from the upstream end to the downstream end of the cavity. In their work
no information was available concerning the distribution of the volume fraction in
the cavity height, whereas in the present case the detectors have also been discretized
in the vertical y direction, in order to obtain instantaneous maps of the volume
fraction: the 24 Na(TI) detector width and height are 8 mm and 4 mm, which results
in mean dimensions for volumes V equal to 6 × 3mm (in the middle of the cavitation
tunnel, see figure 5). The successive measurements in the y direction are obtained
by moving the whole setup vertically (generator and detectors). The X-ray source is
characterized by a rectangular collimator (2 × 35 mm) and its operating conditions
are 160 kV − 1 mA. The focal length of the fan beam collimator is 715 mm (0.85◦

aperture for each detector). No filtering is applied to the measurements presented
here. For each position of the detectors, the acquisition was performed during 30 s,
so 30 000 data points were obtained.

X-ray measurements are characterized by an uncertainty based on the following
expression:

δ

(
Vv(t)

V

)2

=

[
ln(I/I1)

I0(ln(I0/I1))2

]2

δI 2
0 +

[
ln(I0/I )

I1(ln(I0/I1))2

]2

δI 2
1 +

[
1

I (ln(I0/I1))

]2

δI 2.

(3.2)
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Figure 5. Illustration of the X-ray attenuation device: (a) side view, (b) top view
(dimensions in mm).

This leads in the case of the 3◦1 incidence to a maximum relative error lower than
5% with a level of confidence equal to 68 %. The uncertainty is slightly higher for
the incidences 4◦7 and 5◦9 (respectively 11 % and 12 %) because the signal intensity
was lower than in the first case. This decrease can be attributed to a minor anomaly
in the X-ray source and/or functioning of the detectors.

The pressure fluctuation signal is also recorded to detect the successive vapour cloud
shedding and to facilitate the connection between the data obtained at the different
positions in the vertical direction. Measurements are performed with a PCB model
M106B50 piezo-electric pressure transducer whose resonant frequency is 40 kHz and
sensibility is 0.07 mV Pa−1. The transducer is mounted flush in one of the vertical
walls of the test section, 30 mm upstream of the foil leading edge.
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Data set 1 Data set 2 (X-ray measurements)

αi σ Uref αi σ Uref αi σ Uref αi σ Uref

1◦ to 6◦ 0.5 6 3◦1′ 0.5 6 4◦7′ 0.8 6 5◦9′ 0.95 6
0.7 6 3◦1′ 0.7 6 4◦7′ 0.95 6 5◦9′ 1.15 6
0.9 6 3◦1′ 0.9 6 4◦7′ 1.2 6 5◦9′ 1.4 6
1.1 6 3◦1′ 1.1 6 4◦7′ 1.4 6 5◦9′ 1.2 5
1.3 6 3◦1′ 0.8 5 4◦7′ 1 5 5◦9′ 1.2 7
1.6 6 3◦1′ 0.8 7 4◦7′ 1 7 5◦9′ 1.2 8
1.8 6 3◦1′ 0.8 8 4◦7′ 1 8

3◦1′ 0.8 9

Table 1. Flow conditions for the two sets of experimental data.

Two sets of experimental data are presented (see table 1). They were obtained with
different experimental procedures:

Set 1 was obtained a few months before the X-ray measurements. So, for each
flow condition, only the mean cavity length Lcav and the shedding frequency f were
recorded. The angle of attack was varied between 0◦ and 6◦ by steps of 1◦, the
reference velocity Uref was equal to 6 m s−1, and a large range of cavitation numbers
was tested, from σ = 1.8 down to σ = 0.5. This set of data has been used by Coutier-
Delgosha et al. (2005) and it will be considered in the present paper as the reference
one.

Set 2 corresponds to the X-ray measurements. Three angles of attack were tested:
3◦1, 4◦7, and 5◦9. Uref is varied from 5 m s−1 to 9 m s−1, and σ is varied from 0.5
to 1.4 to obtain several cavity lengths at each incidence. For a single value of σ

(corresponding to Lcav/Lref close to 0.75), Uref is varied from 5 m s−1 to 9 m s−1, to
investigate the effect of the flow velocity on cavitation.

4. Numerical model
The resolution of the unsteady Reynolds-averaged Navier–Stokes equations is

coupled with the physical model of cavitation presented in § 2. The main features of
the solver are given next, and additional details can be found in Coutier-Delgosha
et al. (2003a).

4.1. Algorithm

Two-dimensional calculations are performed. Although the foil aspect ratio is close
to 0.5, top views of the cavitating flow show that the sidewalls of the cavitation tunnel
have only a moderate influence on the sheet cavity shape in the spanwise direction:
about 15 mm on each side is affected, while the foil span is 80 mm. So, it is expected
that the present configuration is governed mainly by two-dimensional effects that
two-dimensional calculations should be reproducible.

According to the state law applied to the mixture, density depends only on the
pressure. This means that thermal effects are neglected and no energy equation is
considered. Such an assumption is completely valid for cavitation in cold water: the
variation of Pv due to the slight cooling of the flow in the vaporized areas (about
1.4 Pa, according to Charles 1994) is negligible compared to the �Pv range represented
in figure 3 (about 3000 Pa).
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The mass and momentum equations are solved in the orthogonal frame of
curvilinear coordinates (ξ, η), which leads to the following system of equations:

S
∂

∂t
(ρΦ) + ∇ξ

(
ρuΦ − ΓΦ

∂Φ

∂ξ

)
+ ∇η

(
ρvΦ − ΓΦ

∂Φ

∂η

)
= SΦ

ρ = F (Cp, σ ),

⎫⎬
⎭ (4.1)

where u and v are the velocity components along coordinates ξ and η respectively, Φ

stands either for 1, u or v, ΓΦ is the diffusion coefficient, ∇ξ and ∇η are the physical
components of the divergence operator along the curvilinear coordinates, SΦ is the
source term, Cp is the non-dimensional pressure coefficient, and σ is the cavitation
number.

The numerical resolution is based on a pressure correction method derived from the
SIMPLE algorithm proposed by Patankar (1981). The coupling between the Reynolds
equations and the highly compressible state law has induced several modifications of
the initial scheme (Coutier-Delgosha et al. 2003a). Each physical time step consists
of successive iterations which march the solution towards convergence. A finite-
volume discretization is applied, associated with a staggered grid to avoid pressure
oscillations. The diffusive terms are calculated in a purely central manner, while the
convection terms are estimated with the non-oscillatory second-order HLPA (hybrid
linear/parabolic approximation) scheme proposed by Zhu (1991). This is a second-
order scheme, which locally switches to first order, to prevent numerical oscillations
in critical high-pressure- or high-density-gradient areas. A second-order implicit time
integration scheme is applied:

∂(ρΦ)

∂t
=

1.5ρn+1Φn+1 − 2ρnΦn + 0.5ρn−1Φn−1

�t
. (4.2)

The main steps of a single iteration are listed next:
(i) Resolution of the transport equations for the turbulent variables, and calculation

of the turbulent viscosity νt .
(ii) Calculation of the estimated velocities U∗(u∗, v∗) from the momentum balance

equations.
(iii) Calculation of the density ρ∗ and its derivative (∂ρ/∂P ), according to the

barotropic state law.
(iv) Resolution of the pressure correction equation. It is derived from the mass

balance equation, which is discretized in each cell according to the following
expression:

1.5
S

�t
ρn+1

p = −ρn+1
e un+1

e �ξe +ρn+1
w un+1

w �ξw −ρn+1
n vn+1

n �ηn +ρn+1
s vn+1

s �ηs +Sn
ρ (4.3)

where S is the cell area, p denotes the current cell, and e, w, n, s denote the east, west,
north, and south neighbouring cells. Sn

ρ contains the explicit source terms resulting
from the time discretization.

To obtain the final pressure correction equation, velocities u and v are replaced
by u∗ + du, v∗ + dv, respectively, while ρ is replaced by ρ∗ + dρ. Thus, the pressure
correction equation yields not only velocity variations dU(du, dv) but also supple-
mentary terms involving variations dρ. The term dU is derived from a simplified
differential form of the momentum balance equation, while dρ is written

dρi,j =

(
∂ρ

∂P

)
i,j

dPi,j . (4.4)
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(v) When the pressure correction dP is obtained, not only the velocity and the pres-
sure but also the density values are corrected, according to the following expression:

ρ = ρ∗ +

(
∂ρ

∂P

)
dP. (4.5)

Densities obtained from equation (4.5) may be outside the physical range, because
of the high local values of (∂ρ/∂P ) in the two-phase mixture. Non-physical values
are thus corrected, and a supplementary loop over the pressure correction step is
performed until all values of the void ratio are obtained inside their physical range
[0, 1].

4.2. Turbulence model

The Reynolds number based on Uref and the chord Lref varies between 8 × 105

and 1.4 × 106 in the experiments, so the flow is fully turbulent in almost all the
vaporized areas, and a turbulence model is applied in the numerical simulations. As
reported by Yuan & Schnerr (2003) and Coutier-Delgosha et al. (2003a), simulating
cloud cavitation with a standard two-equation turbulence model encounters serious
difficulties, since turbulent dissipation is systematically over-estimated in the rear part
of the cavitation sheet. As a result, the re-entrant jet is stopped before breaking the
cavity interface, and the flow remains stable. Corrections are usually applied to these
models to obtain unsteady sheet cavitation. Wu, Wang & Shyy (2005) propose for
example applying a filter-based k–ε model. In this approach, the filter depends on
the grid size, in order to avoid excessive dissipation in small-scale motions, without
altering the large-scale flow characteristics. In the case of the barotropic state law,
Coutier-Delgosha, Fortes–Patella & Reboud (2003b) have shown that taking into
account the effect of the liquid/vapour mixture compressibility on the turbulence
structure is necessary to obtain the unsteady effects reported in experiments. So the
modification of the k–ε RNG turbulence model proposed in that previous publication
is applied in the present calculations. The turbulent viscosity is expressed in the form

µt = f (ρ)Cµk2/ε, (4.6)

with

f (ρ) = ρv + (1 − β)n(ρl − ρv), n = 10, Cµ = 0.085, (4.7)

where k denotes the turbulent energy, and ε the turbulent dissipation. All parameters
of the model, except the function f (ρ), are set to the value proposed by Orszag (1993).
According to equation (4.7), f equals ρv or ρl in the regions containing respectively
pure vapour or pure liquid, but it decreases rapidly toward ρv for an intermediate
volume fraction of vapour. This modification has been applied previously in several
configurations (Venturi-type sections, foil sections, cascade of hydrofoils) and a correct
simulation of the unsteady flow properties was obtained in all situations (Coutier-
Delgosha, Fortes-Patella & Reboud 2002). A similar improvement was achieved by
using the corrections proposed by Wilcox (1998) in his k–ω model compressible fluids
(Coutier-Delgosha et al. 2003b).

4.3. Boundary conditions, initial conditions, convergence criteria and grid

The length of the computational domain in the flow direction is 5Lref downstream
from the foil section and 2Lref upstream. These dimensions were found in previous
studies to be large enough to minimize the influence of the inlet and outlet boundary
conditions on the behaviour of the cavitating flow. Although the flow in the vaporized
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Mean vapour volume
Grid size �t σ Lcav/Lref f (Hz) (×10−4 m3)

140 × 70 Tref/50 1.19 0.35 32.6 1.95
140 × 70 Tref/100 1.20 0.4 26.7 2.51
140 × 70 Tref/200 1.22 0.42 26.4 2.74
140 × 70 Tref/500 1.22 0.42 26.3 2.75
70 × 40 Tref/200 1.17 0.325 35.2 1.67

100 × 50 Tref/200 1.19 0.4 29.6 2.61
350 × 90 Tref/200 1.19 0.42 26.3 2.69
540 × 90 Tref/200 1.22 0.42 26.1 2.70

Experiment 1.2 0.4 26.5 2.64

Table 2. Influence of the grid size and the time-step on the mean vapour volume per width
unit. (Incidence 4◦7′, σ = 1.2, Lcav/Lref ≈ 0.40, Uref =6m/s−1).

areas is highly compressible, low compressibility conditions are encountered in the
pure liquid areas, i.e. in the main part of the domain. So classical boundary conditions
for such flow conditions are applied: imposed inlet velocity, and fixed outlet static
pressure. Standard ‘log-law’ wall functions are used along the tunnel walls and the
foil surface, so the first grid points are located at a non-dimensional distance from
the walls y+ varying between 25 and 80.

In the simulations, a preliminary stationary step is first performed in non-cavitating
conditions: a high pressure level is imposed at the domain outlet, to avoid any flow
vaporization. Then, the outlet pressure is decreased slowly during the first hundred
time steps, to reach the desired value of the cavitation number σ . Liquid passing over
the foil suction side progressively vaporizes during this decrease. The outlet pressure is
then kept constant and the calculation is continued for 100Tref , where Tref = Lref /Uref .
So the order of magnitude of Tref is the transit time of the flow from the leading edge
to the trailing edge of the foil section. When Uref is varied from 5 m s−1 up to 9 m s−1,
100Tref corresponds to 1.5 s to 3 s, which is sufficient to obtain tenths of cavitation
cycles and thus to characterize the flow behaviour (mean attached cavity length Lcav ,
oscillation frequency f ). The time-step �t equals Tref/200, because lower values were
found to change the results only slightly, as can be seen in table 2. A detailed study
of the influence of the numerical parameters on the unsteady flow behaviour can be
found in Coutier-Delgosha et al. (2003a).

The convergence criterion for each time step and each equation is based on the sum
of the absolute values of the residuals in the entire computational domain. This sum
must be lower than 10−4 for the mass and momentum equations and 10−3 for the k

and ε equations. Moreover, variations of the non-dimensional density ρ/ρl must be
lower than 10−5. When all these conditions are fulfilled, the time step is converged.

The grid used for the results presented in § 5 is composed of 140 × 70 orthogonal
cells (figure 6). Four other meshes composed respectively of 70 × 40, 100 × 50,
350 × 90, and 540 × 90 cells have also been tested for a single flow condition (angle
of attack 4◦7, σ ≈ 1.2, Uref = 6 m s−1), and the results are compared in table 2. Note
that the cavitation number σ is slightly different for each calculation, because the
pressure is fixed at the domain outlet, so the upstream pressure fluctuates during the
simulations, and σ cannot be imposed strictly. Results reported in table 2 show that
increasing the grid size above 140 × 70 cells does not significantly modify the flow
behaviour. This confirms the conclusion previously reported by Coutier-Delgosha
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Figure 6. Computational grid for the incidence 5◦9′ (Lref = 15 cm).

et al. (2003a) in configurations of Venturi-type sections. A special grid contraction
is applied in the areas where cavitation is expected, i.e. on the foil suction side and
especially near the leading edge. Section 6 is based on the calculations performed
with the finest grid, to discuss the subtle features of the flow.

5. Structure of the vaporized areas
The unsteady behaviour of the sheet cavity is reported qualitatively in figure 7 in the

case of a 3◦1′ angle of attack, an inlet velocity Uref = 6 m s−1, and a maximum cavity
length Lcav/Lref close to 0.4. The sheet cavitation destabilization appears clearly in
steps 2 and 3, leading to the formation and detachment of a vapour cloud (step 4).
This main separation is followed by small detachments (step 5), which finally all
collapse in the cavity wake (step 6).

The internal structure of the sheet cavity is investigated here by simulations and
experiments. The time-average composition of the cavity and the unsteady properties
of the flow are successively considered.

5.1. Time-average composition

In this section, the time-average properties of the flow are first investigated.
Figures 8(a) and 8(b) give the evolution of the cavity length according to the parameter
σ/αi , derived from that (σ/2αi) proposed by Acosta (1955) in his linearized theory
of partial cavitation on flat plate hydrofoils. Le et al. (1993) have more recently
correlated the cavity length Lcav with the parameter σ/αi , in the case of hydrofoils
similar to the present one. The two sets 1 and 2 of experimental data are reported
in figure 8(a). As it was previously mentioned by Coutier-Delgosha et al. (2005), the
cavity lengths measured in all flow conditions are very close to a common curve,
which suggests that they only depend on σ/αi . The data scattering may be mainly
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Initial cavity1

Cavity destabilization2

Cloud formation3

Cloud detachment4

Cloud convection5

Cloud collapse6

Figure 7. Successive shapes of the cavitation sheet during one period of oscillation
(incidence 3◦1′, Uref = 6 m s−1, Lcav/Lref ≈ 0.4.)

due to the 8 % measurement uncertainty in Lcav . Recall also that the experimental
uncertainties in αi and σ are 1 % and 5 % respectively, so the uncertainty in σ/αi is
6%. The solid line is a polynomial approximation of the experimental points of set 1
given by

Lcav

Lref

=
A

(σ/αi)n
(5.1)

with A ≈ 100 and n ≈ 2.
The two sets of data are in close agreement, which shows that the conditions of sheet

cavitation that are investigated here by X-ray measurements (set 2) are consistent
with the previous measurements published in Coutier-Delgosha et al. (2005) with a
broader range of flow conditions (set 1).

Measurement set 1 is also compared in figure 8(b) to the results of the numerical
simulations. To obtain the time-averaged cavity length from the simulations, first the
time-averaged density field is calculated, then a threshold value of β = 5 % is applied
to find the limit of the sheet cavity (cavitation detached from the foil surface is not
considered, as in the experiments). A fair agreement is generally obtained: only very
small cavities (Lcav/Lref < 0.15) are noticeably underestimated by the model. This
discrepancy can be associated with a complete and unrealistic stabilization of the
flow in the simulations for such small cavity lengths. Figures 8(a) and 8(b) show
that identical flow conditions applied in the experiments and in the simulations lead
to similar cavitating conditions. This result enables more precise comparison of the
morphology of sheet cavities obtained from X-ray measurements (set 2) and from the
simulations, respectively.

Figures 9, 10, and 11 present the experimental time-average distribution of the
volume fraction of the vapour phase β at incidences 3◦1′, 4◦7′, and 5◦9, respectively.
For each angle of attack, the results are given for two cavity lengths: a small one
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Figure 8. Time-average cavity length as a function of σ/αi for Uref = 6 m s−1: (a) comparison
between experimental data of set 1 and set 2, (b) comparison between the numerical results
and the data of set 1.

(Lcav/Lref ≈ 0.5) and a large one (Lcav/Lref > 0.7). The white rectangle on the pictures
denotes the limit of the X-ray measurements in the middle of the channel (the square
would be larger close to the detectors and smaller close to the X-ray source). At
incidence 5◦9′, the size of this domain is smaller than at incidence 3◦1′ and 4◦7′,
because of defective detectors in the rear part of the cavity. So for this particular
angle of attack, no information is available concerning the cavity wake. X is the
horizontal distance from the foil leading edge, while Y denotes the vertical distance
from the foil axis of rotation, which is located at the middle of the test section
(see figure 4). Note also that the scale of β is adjusted on the different figures to
improve the contrasts. To display the quantitative evolutions of β , three profiles are
also indicated, at 2 cm, 5 cm, and 8 cm from the leading edge, respectively. Identical
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Figure 9. Time-average distribution of the volume fraction of the vapour phase β obtained
by experiments at incidence 3◦1′ and Uref =6ms−1 (measurement set 2). (a) σ = 0.7
(Lcav/Lref ≈ 0.7), (b) σ = 0.9 (Lcav/Lref ≈ 0.45). The large white rectangle denotes the limit

of the measurements. The evolution of β along three vertical profiles (thick white lines) is also
compared to the numerical prediction (thin grey lines).

scales are applied, with a maximum volume fraction of 60 %. Both experimental and
numerical profiles are reported.

It can be noticed that some vapour is detected at incidences 4◦7′ and 5◦9′ upstream
from the leading edge. This is due to the divergence of the X-rays from the source to
the detectors (see figure 5), which makes the measurement volumes change in size and
position across the channel. The β distributions in figures 9 to 11 correspond to their
size and position at the middle of the channel. So, measurements volumes represented
just upstream from the leading edge have partially crossed the sheet cavity between
the front vertical side and the middle of the cavitation tunnel. This is not the case at
incidence 3◦1′, because the measurement domain was moved slightly downstream.

The time-average volume fraction of the vapour phase β never exceeds βmax = 35 %
in the small cavities, and βmax = 60 % in the large ones. It is lower than 10 % in
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Figure 10. As figure 9 but at incidence 4◦7′ and (a) σ = 0.8 (Lcav/Lref ≈ 0.9),
(b) σ = 1.2 (Lcav/Lref ≈ 0.4).

the cavity wake, where the presence of vapour is hardly detected visually during
the experiments. This confirms the results previously obtained by Stutz & Reboud
(1997b, 2000) for sheet cavitation developed at the throat of Venturi-type sections:
they found maximum values lower than 50 % in all cases. Each volume fraction
profile exhibited here presents a maximum value at mid-height of the cavity, and then
a rapid decrease to zero for both smaller and greater heights. The values obtained by
X-ray measurements very close to the foil surface should be considered with caution
because the X-ray source was not aligned with the foil incidence, so the volumes
crossed by the X-rays partially include a part of the foil. However, a significant
decrease of β close to the foil is systematically obtained.

A fair agreement is obtained between the experimental and numerical results at
incidences 3◦1′ and 4◦7′: both the magnitude of β and its evolution in the cavity
height are close to the measurements. At incidence 5◦9′, some notable discrepancies
are obtained: all volume fractions predicted by the simulations are lower than the
measured one. These discrepancies are observed even for very low values of β , close
to the cavity limit for example. Moreover, experimental data exhibit a residual volume
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Figure 11. As figure 9 but at incidence 5◦9′ and (a) σ = 0.95 (Lcav/Lref ≈ 1.00), (b) σ = 1.4
(Lcav/Lref ≈ 0.6).

fraction β close to 5 % well over this limit, which is not the case at the two other
incidences. These observations suggest that a spurious gap �β ≈ 5 % may alter the
experimental results at incidence 5◦9′. However, no evidence of a further uncertainty
on the measurements in this particular case was detected.

The influence of the angle of attack on the maximum time-average volume fraction
of the vapour phase βmax is presented in figure 12(a). The data plots are for various
cavity lengths, at constant Uref = 6 m s−1. βmax increases linearly with the cavity length,
and the values nearly follow the law βmax ≈ 0.6Lcav/Lref . No significant influence of
the angle of attack is observed.

A different conclusion arises from figure 12(b), which shows the evolution of the
time-averaged vapour volume Vv contained in the sheet cavity as a function of
incidence. The volumes are given here per width unit in order to enable comparisons
with the two-dimensional numerical results. The vapour volume also increases linearly
with the cavity length, and a close agreement is obtained between the experimental and
the numerical results. A significant effect of the incidence is observed here: all values
closely follow the law Vv ≈ 7 × 10−3α0.4

i Lcav/Lref , with αi in degrees. Figures 12(a) and
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12(b) suggest that the angle of attack of the foil may have some influence on the
volume fraction distribution inside the cavity. This point is discussed below.

The time-average composition of the sheet cavity is investigated in more detail
in figures 13 to 17. Figure 13 focuses on the evolution of the mean vapour volume
VvX(X) in the flow from the foil leading edge to its trailing edge, at incidence 3◦1′. Vv X

at station X corresponds to the vapour volume contained in a cross-section located at
point X, per unity of width and depth. The velocity was varied from 5 m s−1 to 9 m s−1.
The objective is to compare sheet cavities of identical sizes, but in practice the plots
are related to cavity lengths Lcav/Lref between 0.7 and 0.9. To get rid of this slight
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Figure 14. Evolution of the vapour volume from the leading edge for to the trailing edge for
incidences 3◦1′, 4◦7′, and 5◦9′ (measurement set 2).

inconsistency, Vv X is divided by Lcav and plotted as a function of X/Lcav . A significant
influence of velocity can be observed: Vv X/Lcav progressively increases when Uref is
increased. On the other hand, the maximum vapour volume is systematically obtained
at X/Lcav ≈ 0.35/0.4, for all values of the velocity. These results suggest that a unique
curve may be obtained if Vv X/Lcav is divided by an appropriate function of Uref .

This point is confirmed in figure 14(a), which shows the evolution of Vv X/(LcavU
0.6
ref )

for the different values of Uref at incidences 3◦1′, 4◦7′, and 5◦9. For each angle of attack,
all data fit a single curve, which is indicated on the graph as a dotted line. The data are
scattered over a range ±5 % around the curve, which is smaller than the measurement
uncertainty. A noticeable influence of the incidence on the vapour volume can be
observed in figure 14(a): the shape of the curves remains identical, but the maximum
vapour volume increases with the incidence. In figure 14(b), Vv X/(LcavU

0.6
ref α

0.4
i ) is

plotted as a function of X/Lcav , for all velocities and all angles of attack. The data
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Figure 15. Evolution of the vapour volume from the leading edge to the trailing edge.
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points are close to a unique curve the equation of which is

Vv X

/(
LcavU

0.6
ref α

0.4
i

)
= a(X/Lcav )

3 + b(X/Lcav )
2 + c(X/Lcav ) + d,

with a = 4.2 × 10−5, b = −10−4, c = 6 × 10−5, and d = 2.8 × 10−6. This result suggests
that for the present foil geometry and sheet cavities of similar lengths, no major
change in the two-phase flow structure is obtained, when the velocity or incidence
is modified. Of course this conclusion is not valid for cavities of different lengths,
as can be seen in figure 15(a): the evolution of Vv X is drawn for several cavity
lengths Lcav/Lref = 0.25, 0.4, 0.8, and 0.9. It can be observed (figure 15b) that plotting

Vv X/Lcav as a function of X/Lcav does not lead to a single curve: the four cavities are
characterized by different two-phase structures.

The evolution of Vv Y (Y ) from the foil wall up to the top of the cavity is shown
in figure 16 for all incidences and all velocities. As previously, Vv Y at position Y

corresponds to the time-average vapour volume in a horizontal plane located at
altitude Y , per unit width and depth. In the present case, Vv Y /(LcavU

0.6
ref ) is drawn

with respect to Y . It can be noticed that the maximum value of Vv Y /(LcavU
0.6
ref ) is

systematically obtained for Y close to 18 mm ± 2mm, i.e. nearly at mid-height of the
sheet cavity. This was expected, since the variation of αi between 3◦1′ and 5◦9′ leads
to small modifications (±3 mm) of Y at the foil leading and trailing edges. Moreover,
for all angles of attacks and all values of Uref , similar values of Vv Y /(LcavU

0.6
ref ) are

obtained at mid-height. This is consistent with figure 12(a), since it confirms that the
maximum void fraction is nearly independent of αi . Aside from this mid-height point,
a significant disparity can be observed: the void fraction increases with incidence.
This is consistent with figure 12(b), which indicated that Vv increases with αi .

A comparison between the experimental data and the numerical results is given
in figure 17. For the three values of the incidence, the evolution of Vv X/(LcavU

0.6
ref )

is shown as a function of X/Lcav and Vv Y /(LcavU
0.6
ref ) as a function of Y . The charts

related to the numerical simulations are obtained by averaging the results over 50t/Tref,
i.e. more than 10 oscillations of the sheet cavity. A fair agreement can be observed
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Figure 16. Evolution of the vapour volume from the bottom to the top of the cavity.
Incidences 3◦1′, 4◦7′, and 5◦9′ (measurement set 2).

concerning the orders of magnitude of Vv X and Vv Y , as well as their evolution through
the cavity. It confirms that the time-averaged solution of the numerical simulations
is systematically close to the experiments, for αi varying between 3◦ and 6◦.

5.2. Flow unsteadiness

Most of the sheet cavities, even very small, exhibit an unsteady self-oscillatory
behaviour for the three angles of attack considered. This unsteadiness is not systemati-
cally visible to the naked eye, since the frequency increases up to about 70 Hz in low
cavitating conditions. However, it is detected by the analysis of the experimental
pressure signal given by the piezo-electric transducer. The self-oscillation cycle has
been depicted in detail by Pham et al. (1999) in similar conditions with a 4◦ angle
of attack: It mainly consists of three steps: (i) growth of the leading edge cavity
with no significant perturbation, (ii) progression of the re-entrant jet close to the foil
and perturbation of the interface, (iii) partial cavity break-off when the reverse flow
reaches the leading edge, and convection of the cloud of vapour downstream.

Apart from this typical cloud cavitation, steady sheet cavitation is obtained
experimentally only in the case of the 3◦1 angle of attack, when the cavity is shorter
than 3 cm. For such flow conditions no characteristic frequency is detected by the
pressure transducer.

For all other conditions, the experimental data obtained from measurement set 1
are reported in figure 18: the Strouhal number (non-dimensional frequency
St = f Lcav/Uref ) is plotted as a function of σ/αi . An almost constant Strouhal number
St =0.25 ±0.03 is obtained, except in three cases corresponding to very large sheet
cavities (Lcav/Lref > 0.9) respectively at incidence 3◦1′, 4◦7′ and 5◦9′. In these cases, St
falls in the range 0.11–0.13. The value 0.25 is very close to the one reported by other
authors in various configurations of cloud cavitation (Joussellin et al. 1991; Le et al.
1993; Stutz & Reboud 1997b, Pham et al. 1999), whereas the lower one is similar to
the normalized frequency Stref = f Lref /Uref ≈ 0.1 obtained theoretically by Watanabe,
Tsujimoto & Furukawa (2001) in the case of very large sheets of cavitation. These
authors distinguish ‘partial cavity oscillations’, corresponding to cloud cavitation
with Lcav/Lref < 0.75, from ‘transitional cavity oscillations’, occurring for sheets of
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Figure 17. Evolution of the vapour volume along X and Y axes. From top to bottom:
incidences 3◦1′, 4◦7′, and 5◦9′ Comparison between the experimental data (measurement set 2)
and the numerical simulations.

cavitation larger than 75 % of the chord and characterized by a lower Strouhal
number. These names will be used hereafter in the present work to differentiate the
two results.
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Numerical simulations also exhibit unsteady cavitating behaviours in all the range
of cavitation numbers, excepted for very small sheet cavities at incidence 3◦1′, which is
consistent with experiments. The frequency of the oscillations can be estimated from
the calculated pressure fluctuations upstream of the foil, at the location of the pressure
transducer in the cavitation tunnel. Comparisons of the experimental and numerical
results are presented in figure 19 for the three angles of attack and the complete range
of cavitation numbers considered: the frequency f of the oscillations is plotted as a
function of Uref /Lcav . Only partial oscillations are considered here (Lcav/Lref � 0.9),
whereas transitional cavity oscillations will be discussed later. A systematically
good agreement is obtained between the experiments and the simulations. The only
significant discrepancy concerns the very small cavities at incidence 5◦9. However,
the visual estimation of the mean cavity length is not precise for such small cavities.
The relatively high value of the Strouhal number in this case (St = 0.29) as well as
the discrepancy with the numerical result could be to some extent related to this
uncertainty.

The influence of both velocity and incidence on the cavitation cycle is analysed in
figure 20. A nearly constant cavity length Lcav/Lref ≈ 0.75 is maintained at incidences
3◦1′, 4◦7′ and 5◦9′ by varying the cavitation number from 0.7 up to 1.15 (measurement
set 2). In these cavitation conditions, velocity is increased from 5 m s−1 up to 9m s−1

at incidence 3◦1′, and from 5 m s−1 up to 8 m s−1 at incidences 4◦7′ and 5◦9′. The
evolution of βmax (maximum value of β in the flow) confirms the conclusions drawn
in § 5.1: no significant effect of the incidence is obtained, and at a given velocity,
the values remain close to each other, with discrepancies lower than 10 %. The case
Uref = 5 m s−1 and incidence 4◦7′ should be considered with caution, since a small
imprecision in the cavity length may have a notable effect on the maximum volume
fraction of vapour. The velocity increase also has a strong influence on this parameter:
its increase can be estimated as about 25 % higher when velocity is increased from
5 m s−1 to 9m s−1.

The three other results in figure 20 are derived from the pressure signal analysis. The
magnitude of the main frequency peak considerably increases with both incidence and
velocity, which indicates a more regular and strong cavitation cycle. This confirms
the visual observations during the experiments: noise and vibrations progressively
increase when velocity or incidence is increased. At incidence 3◦1′ and low velocity,
the main frequency peak becomes hardly detectable because its magnitude is very
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low. Incidence has almost no influence on the shedding frequency, whereas a velocity
increase results in a noteworthy frequency increase. However, the Strouhal numbers
decrease from about 0.27 down to 0.24 when Uref is increased from 5 m s−1 up
to 8m s−1, because the ratio f/Uref decreases. In the present case this frequency
modification is not due, as is usual, to a growth of the sheet cavity, since this is
maintained constant. Indeed, the increase of the maximum volume fraction of vapour
with velocity suggests that the increase of the vapour volume inside the cavitation
sheet may be responsible here for the Strouhal number decrease.

Figures 21 and 22 present comparisons between the shedding process predicted
by the numerical simulation and that derived from X-ray measurements. Attention
is focused first on the details of two cycles in the case of a 3◦1′ angle of attack,
Uref = 6 m s, and Lcav/Lref = 0.75. The two illustrations figure 21(b, c) present the time
evolutions of the maximum value of β in each cross-section of the cavitation tunnel,
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from the foil leading edge to trailing edge. The first corresponds to the numerical
simulation, while the second is derived from the measurements. Figure 21(a) shows
an example of the numerically predicted flow configuration for t = 0.05 s. A fair
general agreement is obtained between the two results: the cavity growth, the vapour
cloud detachment, and its convection downstream are all predicted by the model.
However, significant discrepancies can be observed concerning the magnitude of β:
it is underestimated by the model during the cavity growth, and overestimated in the
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vapour cloud after its detachment. Note that this second point may be due to the
space averaging because of the size of the volume measurements in the experiments:
higher local volume fractions of vapour may be detected with smaller detectors.
Three-dimensional effects may also partially explain these discrepancies: recall that
results obtained by X-ray absorption are averaged in the spanwise direction, so effects
of the boundary layers on the sidewalls are included in the values of β . Thus, it is
expected that two-dimensional calculations should be able to reproduce the main
mechanisms of the sheet cavity dynamics, whereas subtle features of the flow, such as
local instantaneous values of vapour volume fraction, may be in imperfect agreement
with the X-ray measurements.

After the end of the cavity growth, the experimental results exhibit a progressive
splitting of the sheet cavity, which starts downstream and then propagates upstream.
The volume fraction of vapour β downstream from the split decreases significantly.
When the perturbation is almost 20 mm from the foil leading edge, all the cavity
clearly detaches and starts to move downstream. This suggests that the cavity break-
off is not directly due to the fact that the re-entrant jet reaches its upstream end and
cuts the interface: it may be also associated with the strong modification of the cavity
composition during the reverse flow progression.

This process, i.e. the upstream propagation and the modification of the β distribu-
tion, is predicted well by the numerical model. Discrepancies mainly affect the rear
part of the cavity, where the flow is assumed to completely condense during the
re-entrant jet progression, which is not the case in the experiment. A slight difference
can also be observed at the cavity inception point, which is fluctuating experimentally,
whereas it remains completely stable in the calculation. However, the main process
characteristics, such as the progressive decrease of β during the reverse flow pro-
pagation, are satisfactorily simulated. This fair agreement is confirmed in figure 22,
which displays the comparison between the experimental and the numerical results
during a longer time interval of 1 s, for the three angles of attack. The predicted
shedding frequency is generally systematically in reliable agreement with the measured
one. However, significant disagreements can be observed at incidence 4◦7′: in the
experiment, vapour shedding seems to be composed of successive small detachments,
while in the simulation only a large cloud of vapour is obtained. As previously
mentioned, measurements in the cavity wake are not available at 5◦9′, but the same
discrepancy is expected.

The influence of both reference velocity and foil incidence on the characteristics
of the cavitation cycle is investigated in figure 23 on the basis of the experimental
measurements. The velocity of cavity growth, the progress of the perturbation from
the cavity downstream end, and cloud convection are indicated as functions of the
reference velocity Uref (see also the three arrows in figure 22 to illustrate these three
velocities). Velocities derived from the numerical results are also indicated for the
single case Uref = 6 m s−1. Both experimental and numerical velocities were obtained
by analysing 20 cycles and then averaging the values. The standard deviation is every
time in the range 0.05–0.1 m s−1, which gives an indication of the precision of the
results.

The cavity growth velocity UCG only slightly changes when incidence is changed,
whereas it increases nearly linearly with Uref . All the velocities follow closely to the
relation UCG = Uref /2, which is consistent with the value of 2.4 m s−1 reported recently
by Leroux et al. (2005) for a NACA66 foil section configuration with Uref =5.33 m s−1.
This indicates that the flow inertia is not the only dominant effect in the vaporization
process. The cloud convection velocity UCC is much closer to Uref . In fact, UCC is
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nearly identical to Uref at incidence 4◦7′, while it is slightly lower at incidence 3◦1′ and
slightly higher at incidence 5◦9′. This result shows that between the cloud detachment
and its final collapse, the cloud motion is a simple convection by the main stream. It
also suggests that phase changes are not significant during this motion. The increase
of the cloud velocity with incidence could be related to the increase of the obstruction
generated by the foil and the cavitation sheet in the test section, which leads to higher
velocities outside from the cavity.

The reverse flow velocity URF is of the same order of magnitude as UCG. However, it
is systematically slightly smaller, close to the relation URF = Uref /2.5. The influence of
the incidence is more distinct than for UCG: URF is nearly 1m s−1 higher at 5◦9′ than at
3◦1. For the three velocities UCG, UCC and URF , a fair agreement between experiments
and simulations is obtained: discrepancies never exceed 0.5 m s−1. The reverse flow
velocity is particularly close to the experimental data at all incidences, which confirms
that the main mechanisms of its progress are predicted well by the model.

When a 60 % increase is applied to Uref (from 5 m s−1 up to 8 m s−1), the same
order of magnitude is obtained for the increase of UCG, UCC , and URF , since these
velocities were found to be all nearly proportional to Uref . However, only a 40 %
increase of the shedding frequency f is measured at the same time (see figure 20).
This indicates that the vapour shedding is not governed only by the cavity growth, the
reverse flow progress, and the cloud convection. The frequency may also depend on
a fourth mechanism, such as the cloud collapse. The cloud collapse duration may be
nearly independent of Uref , which would explain why the frequency does not increase
proportionally to the flow velocity. It was previously found by Leroux et al. (2005)
that the collapse may have a strong influence on the cavitation cycle, because of a
pressure wave propagating from the collapse location towards the cavity. In some
situations the high intensity of the pressure wave was found to be responsible for
a temporary stopping of the next cavity growth, resulting in a drastic reduction of
the cycle frequency. The present results also suggest an interaction between the cloud
collapse and the next cavity evolution. This point will be investigated in § 6.
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Figure 24. For legend see facing page.
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Figure 24. Time evolution of the phase-average volume fraction of the vapour phase
(Uref = 6 m s−1, Lcav/Lref ≈ 0.75). From left to right: incidences 3◦1′, 4◦7′, and 5◦9′. From
top to bottom: height 38 mm down to height 8 mm. Areas located inside the foil are coloured
white.

Figure 24 presents the evolution of the phase-averaged volume fraction of vapour.
The flow conditions still are Uref =6ms−1 and Lcav/Lref ≈ 0.75. From left to right,
pictures correspond to incidences 3◦1′, 4◦7′, and 5◦9′, respectively. Each picture
presents the evolution of the phase-averaged volume fraction β from the foil leading
edge to its trailing edge during one period, i.e. nearly 0.081 s at incidence 3◦1′, and
0.076 s at both other incidences. The first line (a) of pictures corresponds to the
detectors located at height 38 mm, while the last one (k) corresponds to height 8 mm.
It was previously mentioned in § 3 that the vertical size of the volume crossed by
X-rays is 3mm (in the middle of the test section). So results corresponding to eleven
successive heights are given here. Note that the lowest heights partially cross the
hydrofoil: the areas located inside the foil are shown in white on the pictures. Twenty
successive cycles are used for the phase averaging method, and the end of the cloud
collapse was chosen as a reference for the end of the period at all incidences.

Lines (a) to (c) correspond to heights where only cloud convection is detected.
The attached cavity is located lower, between heights (d) and (k). Line (h) nearly
corresponds to the foil leading edge position, so results presented between (i) and (k)
do not include the upstream part of the cavity. The successive steps of the cavitation
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cycle appear clearly in the pictures. For example in the case of incidence 3◦1′, the
cavity growth occurs for 0< t < 0.02 s, then the progressive transformation of its
composition during the re-entrant jet development is observed between t ≈ 0.02 and
0.04 s. The vapour cloud detachment, detected by a motion at the downstream end
of the cavity (see for example line d), starts at t ≈ 0.05 s, and its convection continues
until it collapses at t ≈ 0.08 (see line a). This flow evolution is modified when incidence
is increased: at 5◦9′, a significant time interval is observed between the vapour cloud
collapse (t ≈ 0.08 s) and the growth of the next cavity, which starts only at t ≈ 0.01 s.
This time interval is close to zero at incidence 4◦7′, while at 3◦1′ the next cavity growth
has started before the end of the collapse. This confirms that the cloud implosion
plays a major role in the cavitation cycle.

Detailed information concerning the maximum volume fraction of vapour is given
in figure 24. Highest values are obtained at height 23 mm (line f ) at the end of
the cavity growth, i.e. at t ≈ 0.02 (β = 0.64), 0.025 (β = 0.67), and 0.045 (β =0.71)
for incidences 3◦1′, 4◦7′, and 5◦9′, respectively. A slight effect of incidence is thus
observed, which was not the case with the maximum time-averaged volume fractions
βmax (see figure 12). Figure 24 also confirms that the cavitation sheet structure is
strongly modified during the re-entrant jet development: a large reduction of the void
fraction is observed from line (e) to (i) between the end of the cavity growth and
the cloud detachment. This indicates that during this time interval the void fraction
decreases from 55 %–70 % down to 25 %–35 % over nearly all the cavity height.

Pictures in lines (c) and (d) exhibit some fluctuations of β at the top of the attached
cavitation sheet. Indeed, the maximum void fraction in line (d) for 0.01 < t < 0.05 is
oscillating, and some vapour is detected intermittently at height (c) at incidences 4◦7′

and 5◦9′.

6. Analysis of partial and transitional cavity oscillations
In this section the mechanisms that govern the flow instability in partial cavity

oscillations and transitional cavity oscillations are discussed on the basis of the
numerical simulations; the good agreement between experiments and predictions
shown previously for both conditions allows us to perform a more detailed
investigation of the numerical results.

6.1. Partial cavity oscillations

It was reported by Pham et al. (1999) that partial cavity oscillations are directly
driven by the re-entrant jet that periodically flows under the cavity towards the
leading edge. When this reverse flow reaches the cavity upstream end, it cuts the
interface. This leads to the splitting of the cavity and the separation of its rear part,
which is then convected by the main flow downstream. This phenomenon is illustrated
in figure 25, which presents the nine successive shapes of the sheet cavity obtained
during a complete cavitation cycle at incidence αi = 4◦7′ and σ =1.32 (in this case
Lcav/Lref ≈ 0.4). The shapes are obtained by phase averaging. The bottom part of
each image corresponds to the numerical result, and the upper part to experiments.
It can be observed that the evolutions of the cavity shape are similar in the two
cases. The calculation correctly predicts the re-entrant jet flowing upstream close to
the foil, as reported experimentally by Pham et al. (1999) in the same configuration.
A small sheet cavitation is also obtained by the numerical model on the foil pressure
side, which does not seem to be the case in experiments. However, the very low
void fraction predicted by the model in this area (less than 5 %) is difficult to detect
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Figure 25. Phase-averaged cycle of partial cavity oscillations (σ = 1.32, angle of attack 4◦7′).
Top: cavity shape obtained by image processing of experimental side views of the cavity.
Bottom: numerical result.

visually. Moreover, even though a pressure close to Pv is obtained on the bottom side
of the foil section in the experiments, all the cavitation nucleii may be carried away
by the flow, since no recirculation occurs on this side of the foil. In this case, no area
of cavitation would be obtained in the experiments, while it would be predicted by
the model because of the local low pressure. A small pressure side cavity is observed
in the cavitation tunnel for slightly lower pressure conditions.

Figure 26 shows plots of two variables as functions of time in the case of
partial cavity oscillations: (a) the non-dimensional re-entrant jet velocity u/Uref at
station X/Lref = 0.3, and (b) the pressure coefficient Cp = (P − Pref )/

1
2
ρU 2

ref at station
X/Lref = 0.5, which is nearly the point of cavity detachment on the foil surface. P and
Pref are the local and outlet static pressures, respectively. It can be checked that the
re-entrant jet development is strongly correlated to the detachment of the previous
cloud of vapour: its convection downstream results in a significant re-increase of the
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Figure 26. Correlation of the pressure increase in the cavity wake with the inception of the
re-entrant jet. (Partial cavity oscillations: σ = 1.32, angle of attack 4◦7′).

pressure in the cavity wake, and this local pressure gradient may be responsible for
the reversal of the flow from this area to the foil leading edge. This important role
played by the adverse pressure gradient in the cavity wake in the development of the
re-entrant jet, and thus in the inception of cloud cavitation, was previously described
by Laberteaux & Ceccio (2001) and Callenaere et al. (2001).

The organization of the periodic cavitation cycle is now investigated in the case of
larger cavities (σ = 1.1, Lcav/Lref ≈ 0.7). Figure 27 shows, for incidences 3◦1′, 4◦7′, and
5◦9′, the successive occurrence of (a) the re-entrant inception, (b) the cavity break-off,
and (c) the collapse of the cloud of vapour. The oscillation of the pressure at the point
of sheet cavity detachment is also reported, to visualize the evolution of the cycle.
This point is now the foil trailing edge, while it was X/Lref =0.5 for previous smaller
cavities. It can be observed that no systematic correlation between the inception of the
reverse flow and the collapse of the previous cloud of vapour is obtained: sometimes
the collapse happens first, sometimes the re-entrant jet starts first. This suggests that
the pressure wave generated by the implosion of the vapour cloud plays only a minor
role in the flow unsteadiness in the present configuration. This is very different from
previous observations reported by Leroux et al. (2005) in the case of a NACA foil
section. However, in that study, no recirculation was observed on the foil suction side
at non-cavitating conditions, while in the present case, a large recirculation, due to
the sharp leading edge, is obtained. So, here, the sheet cavity is characterized by very
low velocities, and the re-increase of the pressure at the foil trailing edge after the
convection of the cloud of vapour is strong enough to generate the re-entrant jet. In
the NACA configuration, the re-entrant jet flowed against a strong incoming flow on
the foil suction side, so the influence of the pressure wave due to the cloud collapse
may be necessary to produce the reverse flow.

The cavity break-off is systematically obtained when the trailing-edge pressure is
maximum. This is not surprising, since it may correspond to the maximum intensity
of the re-entrant jet. It can be also noted that the delay between the inception of
the re-entrant jet and the cavity break-off is almost constant, which suggests that the
cloud detachment depends only on the re-entrant jet velocity, with no influence of
the pressure wave due to the previous collapse.
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Figure 27. Analysis of the cavitation cycle (partial cavity oscillations, σ =1.1,
Uref = 6 m s−1). (a) αi = 3◦1′, (b) αi = 4◦7′, (c) αi =5◦9′.

In this case of sheet cavitation (Lcav/Lref ≈ 0.7), a small pressure-side cavity is ob-
tained both in the experiments and in the numerical simulations. A periodical interac-
tion between the sheet cavities on the two sides of the foil section can be observed in
the results of the calculations. As shown in figure 28, the growth of the leading-edge
cavity does not directly lead to its break-off and the convection of its rear part
downstream. A supplementary step consisting of (i) a stabilization of the maximum
attached cavity, and (ii) a significant decrease with no break-off, is observed before
a second growth and the final detachment of the main part of cavity. However, this
modification of the periodic cycle does not modify the vapour shedding frequency,
and Strouhal numbers close to 0.25–0.3 are still obtained.

To investigate the interaction between the two sides, an analysis of the cavitation
cycle for σ = 1.1 is now performed, especially during sequence B reported in figure 28
(stagnation and decrease of the cavity with no vapour shedding). Figure 28(a) shows
the length of the sheet cavity on the suction side (top graph) and pressure side (bottom
graph) as a function of time. The sequence of events A, B, and C is indicated and
pictures of the cavity for the situations A and B are shown in figures 28(b) and 28(c)
respectively. The main difference with the previous configuration (Lcav/Lref ≈ 0.4) is a
strong interaction between pressure- and suction-side sheet cavities. This interaction
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Figure 28. Numerical prediction of partial cavity oscillations with interaction at the foil
trailing edge (incidence 4◦7′, σ = 1.1). (a) Evolution during four cycles of the pressure side
cavity (bottom) and the suction side cavity (top). Each cycle is composed of sequences A
(cavity growth), B (cavity stagnation and decrease), C (second growth and cloud detachment).
(b) Sheet cavity illustrating the interaction during sequence A. (c) Sheet cavity illustrating the
interaction during sequence B.

is characterized by a substantial growth of the pressure-side cavity when a large
quantity of vapour reaches the trailing edge on the upper face. This phenomenon
can be observed consecutively (i) during the passage of the vapour cloud at the foil
trailing edge (sequence A), and (ii) between the end of the sheet cavity growth and
its break-off (sequence B).

Figure 29 shows the time evolution during five cycles of (a) the pressure coefficient
Cp on the foil suction side at the trailing edge, (b) the non-dimensional velocity u/Uref

of the re-entrant jet at station X/Lref = 0.7, and (c) the non-dimensional vorticity at
the foil trailing edge. Events A, B, and C are indicated on the graphs. The figure
reveals that only a weak re-entrant jet is present under the cavity during sequences
A and B, i.e. during the pressure/suction side interaction at the trailing edge: u/Uref

is close to zero at stations X/Lref = 0.7. The reverse flow becomes much stronger just
at the beginning of sequence C, after the collapse of the pressure-side cavity. Then it
flows upstream during sequence C and finally results in the cavity split at the end of
this sequence. The weakness of the re-entrant jet during steps A and B may be due
to the very low pressure level imposed at the trailing edge by the pressure-side cavity:
the strong adverse pressure gradient that was assumed to be responsible for the jet
formation is not obtained in the present case (see the evolution of Cp in figure 29), so
the reverse flow remains very slow, simply due to the general recirculation movement
in the cavity. As a consequence, no cavity break-off is observed during sequence B.
After the decrease of the sheet cavity on the foil pressure side, the sudden increase
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of the pressure at the trailing edge immediately leads to the amplification of the
re-entrant jet intensity and the continuation of the standard cycle.

It can also be observed in figure 29 that the inception of the re-entrant jet is
correlated with a peak of vorticity at the foil trailing edge. This point is illustrated by
figure 30, which shows the evolution of the vorticity field at the trailing edge during
the formation of the re-entrant jet. According to this sequence, this jet is generated
by a vortex that results from the interaction between the boundary of the cavity and
the boundary layer on the foil pressure side.

6.2. Transitional cavity oscillations

In the special case of transitional cavity oscillations (Lcav/Lref � 0.9) numerical results
show two characteristic frequencies: a first one (denoted frequency 1 hereafter),
which leads to a Strouhal number close to 0.25–0.3, and a second (frequency 2)
equal to half the first one, leading to Strouhal numbers in fair agreement with the
experimental measurements for such sheet cavities (St ≈ 0.13–0.16). Frequency 1 is
based on upstream pressure fluctuations, as stated previously, whereas frequency
2 can be detected for example by plotting the time evolution of the pressure just
downstream from the foil trailing edge. It can be seen in figure 31 that frequency 1
is consistent with the sheet cavity oscillations on the pressure side, while frequency 2
characterizes the vapour cloud shedding on the suction side. The increase of the delay
between two cloud detachments is due to a more complex cavitation cycle than the one
described previously for standard partial cavity oscillations. As shown in figure 31(a),
in the present case the cycle is composed of (i) the growth of the leading-edge cavity
(sequence A), (ii) its stagnation due to the pressure-side cavity (sequence B), (iii) the
progression of the re-entrant jet and the cavity break-off (sequence C), (iv) the
stopping of the cloud of vapour on the foil suction side, with only little vapour
shedding downstream (sequence D), and (v) the final convection of the cloud of
vapour (sequence E). In comparison with partial cavity oscillations, sequences A, B,
C are the same, whereas sequences D and E are new, and are responsible for the low
value of frequency 2.

The stopping of the vapour cloud convection during sequence D can be seen rather
clearly in figure 31(a): the distance between the cloud of vapour and the foil leading
edge does not increase, even though some slight vapour shedding can be observed
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downstream. This behaviour may be associated with the large pressure-side sheet
cavity growing during sequence D: the interaction between both sides of the foil
section (see figure 31b) seems to block the convection of the cloud, until the pressure-
side cavity is removed (figure 31c). During this time, the next cavity cannot grow at
the foil leading edge, so the next sequence A is delayed. This amplification of the
interaction between the pressure and suction sides may be due to the increase of the
volume of vapour on both sides: it nearly doubles when σ is reduced from 1.1 to
0.88.

Figure 32 shows the time evolutions of Cp at the leading edge, Cp behind the trailing
edge, and the re-entrant jet intensity u/Uref at station X/Lref = 0.5. Frequencies 1
and 2 can be observed in the pressure signals. It can be noticed that during sequence
E, u/Uref becomes positive, because of the convection of the cloud, so no re-entrant
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jet is forming. This is delayed until the next oscillation of the pressure-side cavity, so
frequency 2 is half frequency 1.

According to the numerical simulations, the modification of the cavitation cycle
observed in the case of transitional cavity oscillations is due to the increase of the
interaction between the two sides of the foil section, which delays the convection of
most of the cloud on the pressure side.

7. Conclusions
Some significant points of the analysis which require further experiments and/or

discussion are as follows.
(i) It has been shown that the equations used classically for cavitating flows can be

obtained from mass and momentum conservation inside a control volume V , if V is
much smaller than the characteristic scale of the flow, and much larger than the size
of the liquid/vapour interfaces. These conditions may be a definition for a ‘two-phase
fluid particle’, by analogy with a fluid particle.

(ii) The different models of cavitation are based on similar main assumptions,
derived from the diffusion model initially proposed by Ishii. In the present case, the
model based on a barotropic state law for the mixture gives results in fair agreement
with the experimental ones. However, none of these models takes into account the
physics of the mass and momentum transfers between the phases. This would require
incorporating some information at the microscopic scale, such as the vaporization rate
at the boundary of the vapour bubbles, the slip velocity between liquid and vapour,
and also the thermal transfers at the interfaces. Recent direct numerical simulations
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performed for example in Caltech by Preston (2003) of the behaviour of a vapour
bubble provide some new information concerning these points.

(iii) According to the measurements of the volume fraction of vapour by X-ray
absorption, β does not exceed 35 % for small sheet cavities, and 60 % for the large
ones. For Lcav/Lref ≈ 0.75, the evolution of the vapour volume inside the cavity
Vv/(LcavU

0.6
ref α

0.4
i ) was plotted as a function of X/Lcav , and all results were found very

close to a unique curve, for all velocities and all incidence angles. However, other
configurations of foil sections, such as NACA geometries, would probably lead to
different results.

(iv) The analysis of partial and transitional cavity oscillations has been performed
mainly on the basis of the numerical results. Detailed measurement of the
instantaneous velocities inside the liquid/vapour medium would enrich the present
discussion concerning the different cavitation cycles. These measurements require
specific techniques such as endoscopic PIV or X-ray absorption, which are currently
being developed by several teams around the world, including the LML laboratory
in France.

Concerning the numerical part of this work, the authors would like to express
their gratitude to the CNES (French Space Agency) for its continuous support.
The numerical model has been developed for fifteen years in the LEGI laboratory
(Grenoble, France) with successive contributions of Y. Delannoy and J-L. Reboud,
and co-workers.
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